Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal multiclass overfitting by sequence reconstruction from Hamming queries (1908.03156v2)

Published 8 Aug 2019 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: A primary concern of excessive reuse of test datasets in machine learning is that it can lead to overfitting. Multiclass classification was recently shown to be more resistant to overfitting than binary classification. In an open problem of COLT 2019, Feldman, Frostig, and Hardt ask to characterize the dependence of the amount of overfitting bias with the number of classes $m$, the number of accuracy queries $k$, and the number of examples in the dataset $n$. We resolve this problem and determine the amount of overfitting possible in multi-class classification. We provide computationally efficient algorithms that achieve overfitting bias of $\tilde{\Theta}(\max{\sqrt{{k}/{(mn)}}, k/n})$, matching the known upper bounds.

Citations (3)

Summary

We haven't generated a summary for this paper yet.