Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computational approaches to non-convex, sparsity-inducing multi-penalty regularization (1908.02503v4)

Published 7 Aug 2019 in cs.IT and math.IT

Abstract: In this work we consider numerical efficiency and convergence rates for solvers of non-convex multi-penalty formulations when reconstructing sparse signals from noisy linear measurements. We extend an existing approach, based on reduction to an augmented single-penalty formulation, to the non-convex setting and discuss its computational intractability in large-scale applications. To circumvent this limitation, we propose an alternative single-penalty reduction based on infimal convolution that shares the benefits of the augmented approach but is computationally less dependent on the problem size. We provide linear convergence rates for both approaches, and their dependence on design parameters. Numerical experiments substantiate our theoretical findings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.