Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rational Morita equivalence for holomorphic Poisson modules (1908.02325v2)

Published 6 Aug 2019 in math.AG, math.DG, and math.SG

Abstract: We introduce a weak concept of Morita equivalence, in the birational context, for Poisson modules on complex normal Poisson projective varieties. We show that Poisson modules, on projective varieties with mild singularities, are either rationally Morita equivalent to a flat partial holomorphic sheaf, or a sheaf with a meromorphic flat connection or a co-Higgs sheaf. As an application, we study the geometry of rank two meromorphic rank two $\mathfrak{sl}_2$-Poisson modules which can be interpreted as a Poisson analogous to transversally projective structures for codimension one holomorphic foliations. Moreover, we describe the geometry of the symplectic foliation induced by the Poisson connection on the projectivization of the Poisson module.

Summary

We haven't generated a summary for this paper yet.