Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dialog State Tracking: A Neural Reading Comprehension Approach (1908.01946v3)

Published 6 Aug 2019 in cs.CL and cs.LG

Abstract: Dialog state tracking is used to estimate the current belief state of a dialog given all the preceding conversation. Machine reading comprehension, on the other hand, focuses on building systems that read passages of text and answer questions that require some understanding of passages. We formulate dialog state tracking as a reading comprehension task to answer the question $what\ is\ the\ state\ of\ the\ current\ dialog?$ after reading conversational context. In contrast to traditional state tracking methods where the dialog state is often predicted as a distribution over a closed set of all the possible slot values within an ontology, our method uses a simple attention-based neural network to point to the slot values within the conversation. Experiments on MultiWOZ-2.0 cross-domain dialog dataset show that our simple system can obtain similar accuracies compared to the previous more complex methods. By exploiting recent advances in contextual word embeddings, adding a model that explicitly tracks whether a slot value should be carried over to the next turn, and combining our method with a traditional joint state tracking method that relies on closed set vocabulary, we can obtain a joint-goal accuracy of $47.33\%$ on the standard test split, exceeding current state-of-the-art by $11.75\%$**.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Shuyang Gao (28 papers)
  2. Abhishek Sethi (8 papers)
  3. Sanchit Agarwal (8 papers)
  4. Tagyoung Chung (26 papers)
  5. Dilek Hakkani-Tur (94 papers)
Citations (157)