Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Class of Doubly Stochastic Shift Operators for Random Graph Signals and their Boundedness (1908.01596v5)

Published 5 Aug 2019 in eess.SP, cs.IT, and math.IT

Abstract: A class of doubly stochastic graph shift operators (GSO) is proposed, which is shown to exhibit: (i) lower and upper $L_{2}$-boundedness for locally stationary random graph signals; (ii) $L_{2}$-isometry for \textit{i.i.d.} random graph signals with the asymptotic increase in the incoming neighbourhood size of vertices; and (iii) preservation of the mean of any graph signal. These properties are obtained through a statistical consistency analysis of the graph shift, and by exploiting the dual role of the doubly stochastic GSO as a Markov (diffusion) matrix and as an unbiased expectation operator. Practical utility of the class of doubly stochastic GSOs is demonstrated in a real-world multi-sensor signal filtering setting.

Citations (7)

Summary

We haven't generated a summary for this paper yet.