Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fast Content-Based Image Retrieval Method Using Deep Visual Features (1908.01505v1)

Published 5 Aug 2019 in cs.CV, cs.IR, and cs.LG

Abstract: Fast and scalable Content-Based Image Retrieval using visual features is required for document analysis, Medical image analysis, etc. in the present age. Convolutional Neural Network (CNN) activations as features achieved their outstanding performance in this area. Deep Convolutional representations using the softmax function in the output layer are also ones among visual features. However, almost all the image retrieval systems hold their index of visual features on main memory in order to high responsiveness, limiting their applicability for big data applications. In this paper, we propose a fast calculation method of cosine similarity with L2 norm indexed in advance on Elasticsearch. We evaluate our approach with ImageNet Dataset and VGG-16 pre-trained model. The evaluation results show the effectiveness and efficiency of our proposed method.

Citations (6)

Summary

We haven't generated a summary for this paper yet.