Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SANTLR: Speech Annotation Toolkit for Low Resource Languages (1908.01067v1)

Published 2 Aug 2019 in cs.CL, cs.SD, and eess.AS

Abstract: While low resource speech recognition has attracted a lot of attention from the speech community, there are a few tools available to facilitate low resource speech collection. In this work, we present SANTLR: Speech Annotation Toolkit for Low Resource Languages. It is a web-based toolkit which allows researchers to easily collect and annotate a corpus of speech in a low resource language. Annotators may use this toolkit for two purposes: transcription or recording. In transcription, annotators would transcribe audio files provided by the researchers; in recording, annotators would record their voice by reading provided texts. We highlight two properties of this toolkit. First, SANTLR has a very user-friendly User Interface (UI). Both researchers and annotators may use this simple web interface to interact. There is no requirement for the annotators to have any expertise in audio or text processing. The toolkit would handle all preprocessing and postprocessing steps. Second, we employ a multi-step ranking mechanism facilitate the annotation process. In particular, the toolkit would give higher priority to utterances which are easier to annotate and are more beneficial to achieving the goal of the annotation, e.g. quickly training an acoustic model.

Citations (5)

Summary

We haven't generated a summary for this paper yet.