Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Denoise and Decode: A Novel Residual Neural Network Decoder for Polar Codes (1908.00460v1)

Published 1 Aug 2019 in eess.SP, cs.IT, and math.IT

Abstract: Polar codes have been adopted as the control channel coding scheme in the fifth generation new radio (5G NR) standard due to its capacity-achievable property. Traditional polar decoding algorithms such as successive cancellation (SC) suffer from high latency problem because of their sequential decoding nature. Neural network decoder (NND) has been proved to be a candidate for polar decoder since it is capable of oneshot decoding and parallel computing. Whereas, the bit-errorrate (BER) performance of NND is still inferior to that of SC algorithm. In this paper, we propose a residual neural network decoder (RNND) for polar codes. Different from previous works which directly use neural network for decoding symbols received from the channel, the proposed RNND introduces a denoising module based on residual learning before NND. The proposed residual learning denoiser is able to remove remarkable amount of noise from received signals. Numerical results show that our proposed RNND outperforms traditional NND with regard to the BER performance under comparable latency.

Citations (18)

Summary

We haven't generated a summary for this paper yet.