Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bridging Commonsense Reasoning and Probabilistic Planning via a Probabilistic Action Language (1907.13482v1)

Published 31 Jul 2019 in cs.AI

Abstract: To be responsive to dynamically changing real-world environments, an intelligent agent needs to perform complex sequential decision-making tasks that are often guided by commonsense knowledge. The previous work on this line of research led to the framework called "interleaved commonsense reasoning and probabilistic planning" (icorpp), which used P-log for representing commmonsense knowledge and Markov Decision Processes (MDPs) or Partially Observable MDPs (POMDPs) for planning under uncertainty. A main limitation of icorpp is that its implementation requires non-trivial engineering efforts to bridge the commonsense reasoning and probabilistic planning formalisms. In this paper, we present a unified framework to integrate icorpp's reasoning and planning components. In particular, we extend probabilistic action language pBC+ to express utility, belief states, and observation as in POMDP models. Inheriting the advantages of action languages, the new action language provides an elaboration tolerant representation of POMDP that reflects commonsense knowledge. The idea led to the design of the system pbcplus2pomdp, which compiles a pBC+ action description into a POMDP model that can be directly processed by off-the-shelf POMDP solvers to compute an optimal policy of the pBC+ action description. Our experiments show that it retains the advantages of icorpp while avoiding the manual efforts in bridging the commonsense reasoner and the probabilistic planner.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yi Wang (1038 papers)
  2. Shiqi Zhang (89 papers)
  3. Joohyung Lee (46 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.