Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bursty time series analysis for temporal networks (1907.12558v1)

Published 28 Jul 2019 in physics.soc-ph and physics.data-an

Abstract: Characterizing bursty temporal interaction patterns of temporal networks is crucial to investigate the evolution of temporal networks as well as various collective dynamics taking place in them. The temporal interaction patterns have been described by a series of interaction events or event sequences, often showing non-Poissonian or bursty nature. Such bursty event sequences can be understood not only by heterogeneous interevent times (IETs) but also by correlations between IETs. The heterogeneities of IETs have been extensively studied in recent years, while the correlations between IETs are far from being fully explored. In this Chapter, we introduce various measures for bursty time series analysis, such as the IET distribution, the burstiness parameter, the memory coefficient, the bursty train sizes, and the autocorrelation function, to discuss the relation between those measures. Then we show that the correlations between IETs can affect the speed of spreading taking place in temporal networks. Finally, we discuss possible research topics regarding bursty time series analysis for temporal networks.

Summary

We haven't generated a summary for this paper yet.