Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study on Leveraging Scene Graphs for Visual Question Answering (1907.12133v1)

Published 28 Jul 2019 in cs.CV and cs.CL

Abstract: Visual question answering (Visual QA) has attracted significant attention these years. While a variety of algorithms have been proposed, most of them are built upon different combinations of image and language features as well as multi-modal attention and fusion. In this paper, we investigate an alternative approach inspired by conventional QA systems that operate on knowledge graphs. Specifically, we investigate the use of scene graphs derived from images for Visual QA: an image is abstractly represented by a graph with nodes corresponding to object entities and edges to object relationships. We adapt the recently proposed graph network (GN) to encode the scene graph and perform structured reasoning according to the input question. Our empirical studies demonstrate that scene graphs can already capture essential information of images and graph networks have the potential to outperform state-of-the-art Visual QA algorithms but with a much cleaner architecture. By analyzing the features generated by GNs we can further interpret the reasoning process, suggesting a promising direction towards explainable Visual QA.

Citations (49)

Summary

We haven't generated a summary for this paper yet.