Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Differential Privacy: a tutorial (1907.11908v1)

Published 27 Jul 2019 in cs.CR

Abstract: In the past decade analysis of big data has proven to be extremely valuable in many contexts. Local Differential Privacy (LDP) is a state-of-the-art approach which allows statistical computations while protecting each individual user's privacy. Unlike Differential Privacy no trust in a central authority is necessary as noise is added to user inputs locally. In this paper we give an overview over different LDP algorithms for problems such as locally private heavy hitter identification and spatial data collection. Finally, we will give an outlook on open problems in LDP.

Citations (40)

Summary

We haven't generated a summary for this paper yet.