Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new result for the global existence (and boundedness), regularity and stabilization of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization (1907.11823v2)

Published 27 Jul 2019 in math.AP

Abstract: This paper deals with the following quasilinear Keller-Segel-Navier-Stokes system modeling coral fertilization $()$: $$\left{ \begin{array}{l} n_t+u\cdot\nabla n=\Delta n-\nabla\cdot(nS(x,n,c)\nabla c)-nm,\quad x\in \Omega, t>0, c_t+u\cdot\nabla c=\Delta c-c+m,\quad x\in \Omega, t>0, m_t+u\cdot\nabla m=\Delta m-nm,\quad x\in \Omega, t>0,\ u_t+\kappa(u \cdot \nabla)u+\nabla P=\Delta u+(n+m)\nabla \phi,\quad x\in \Omega, t>0,\ \nabla\cdot u=0,\quad x\in \Omega, t>0 \end{array}\right.$$ under no-flux boundary conditions in a bounded domain $\Omega\subset \mathbb{R}3$ with smooth boundary, where $\phi\in W{2,\infty} (\Omega)$. Here the matrix-valued function $S(x,n,c)$ denotes the rotational effect which satisfies $|S(x,n,c)|\leq S_0 (c)(1 + n){-\alpha}$ with $\alpha\geq0$ and some nonnegative nondecreasing function $S_0$. Based on this inequality and some carefully analysis, if $\alpha>0$, then for any $\kappa\in\mathbb{R},$ system $()$ possesses a global weak solution for which there exists $T > 0$ such that $(n,c,m , u)$ is smooth in $\Omega\times( T ,\infty)$. Furthermore, for any $p>1,$ this solution is uniformly bounded in with respect to the norm in $Lp(\Omega)\times L\infty(\Omega) \times L\infty(\Omega)\times L2 (\Omega; \mathbb{R}3)$. Building on this boundedness property and some other analysis, it can finally even be proved that in the large time limit, any such solution approaches the spatially homogeneous equilibrium $(\hat{n},\hat{m},\hat{m},0)$ in an appropriate sense, where $\hat{n}=\frac{1}{|\Omega|}{\int_{\Omega}n_0-\int_{\Omega}m_0}{+}$ and $\hat{m}=\frac{1}{|\Omega|}{\int{\Omega}m_0 -\int_{\Omega}n_0}_{+}$.

Summary

We haven't generated a summary for this paper yet.