Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Adversarial Robustness: The Trade-off between Minimum and Average Margin (1907.11780v1)

Published 26 Jul 2019 in cs.LG and stat.ML

Abstract: Deep models, while being extremely versatile and accurate, are vulnerable to adversarial attacks: slight perturbations that are imperceptible to humans can completely flip the prediction of deep models. Many attack and defense mechanisms have been proposed, although a satisfying solution still largely remains elusive. In this work, we give strong evidence that during training, deep models maximize the minimum margin in order to achieve high accuracy, but at the same time decrease the \emph{average} margin hence hurting robustness. Our empirical results highlight an intrinsic trade-off between accuracy and robustness for current deep model training. To further address this issue, we propose a new regularizer to explicitly promote average margin, and we verify through extensive experiments that it does lead to better robustness. Our regularized objective remains Fisher-consistent, hence asymptotically can still recover the Bayes optimal classifier.

Citations (7)

Summary

We haven't generated a summary for this paper yet.