Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

L^p-asymptotic stability analysis of a 1D wave equation with a nonlinear damping (1907.11712v1)

Published 26 Jul 2019 in math.AP

Abstract: This paper is concerned with the asymptotic stability analysis of a one dimensional wave equation with Dirichlet boundary conditions subject to a nonlinear distributed damping with an L p functional framework, p $\in$ [2, $\infty$]. Some well-posedness results are provided together with exponential decay to zero of trajectories, with an estimation of the decay rate. The well-posedness results are proved by considering an appropriate functional of the energy in the desired functional spaces introduced by Haraux in [11]. Asymptotic behavior analysis is based on an attractivity result on a trajectory of an infinite-dimensional linear time-varying system with a special structure, which relies on the introduction of a suitable Lyapunov functional. Note that some of the results of this paper apply for a large class of nonmonotone dampings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.