Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning higher-order logic programs (1907.10953v1)

Published 25 Jul 2019 in cs.LG, cs.AI, and stat.ML

Abstract: A key feature of inductive logic programming (ILP) is its ability to learn first-order programs, which are intrinsically more expressive than propositional programs. In this paper, we introduce techniques to learn higher-order programs. Specifically, we extend meta-interpretive learning (MIL) to support learning higher-order programs by allowing for \emph{higher-order definitions} to be used as background knowledge. Our theoretical results show that learning higher-order programs, rather than first-order programs, can reduce the textual complexity required to express programs which in turn reduces the size of the hypothesis space and sample complexity. We implement our idea in two new MIL systems: the Prolog system \namea{} and the ASP system \nameb{}. Both systems support learning higher-order programs and higher-order predicate invention, such as inventing functions for \tw{map/3} and conditions for \tw{filter/3}. We conduct experiments on four domains (robot strategies, chess playing, list transformations, and string decryption) that compare learning first-order and higher-order programs. Our experimental results support our theoretical claims and show that, compared to learning first-order programs, learning higher-order programs can significantly improve predictive accuracies and reduce learning times.

Citations (29)

Summary

We haven't generated a summary for this paper yet.