Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolutional Neural Networks on Randomized Data (1907.10935v1)

Published 25 Jul 2019 in cs.CV

Abstract: Convolutional Neural Networks (CNNs) are build specifically for computer vision tasks for which it is known that the input data is a hierarchical structure based on locally correlated elements. The question that naturally arises is what happens with the performance of CNNs if one of the basic properties of the data is removed, e.g. what happens if the image pixels are randomly permuted? Intuitively one expects that the convolutional network performs poorly in these circumstances in contrast to a multilayer perceptron (MLPs) whose classification accuracy should not be affected by the pixel randomization. This work shows that by randomizing image pixels the hierarchical structure of the data is destroyed and long range correlations are introduced which standard CNNs are not able to capture. We show that their classification accuracy is heavily dependent on the class similarities as well as the pixel randomization process. We also indicate that dilated convolutions are able to recover some of the pixel correlations and improve the performance.

Citations (12)

Summary

We haven't generated a summary for this paper yet.