Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Average Consensus under Quantized Communication via Event-Triggered Mass Splitting (1907.10671v1)

Published 23 Jul 2019 in eess.SY and cs.SY

Abstract: We study the distributed average consensus problem in multi-agent systems with directed communication links that are subject to quantized information flow. The goal of distributed average consensus is for the nodes, each associated with some initial value, to obtain the average (or some value close to the average) of these initial values. In this paper, we present and analyze a distributed averaging algorithm which operates exclusively with quantized values (specifically, the information stored, processed and exchanged between neighboring agents is subject to deterministic uniform quantization) and rely on event-driven updates (e.g., to reduce energy consumption, communication bandwidth, network congestion, and/or processor usage). We characterize the properties of the proposed distributed averaging protocol, illustrate its operation with an example, and show that its execution, on any timeinvariant and strongly connected digraph, will allow all agents to reach, in finite time, a common consensus value that is equal to the quantized average. We conclude with comparisons against existing quantized average consensus algorithms that illustrate the performance and potential advantages of the proposed algorithm.

Citations (9)

Summary

We haven't generated a summary for this paper yet.