Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
25 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
99 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
457 tokens/sec
Kimi K2 via Groq Premium
252 tokens/sec
2000 character limit reached

A graphical heuristic for reduction and partitioning of large datasets for scalable supervised training (1907.10421v1)

Published 24 Jul 2019 in cs.LG, cs.DC, and stat.ML

Abstract: A scalable graphical method is presented for selecting, and partitioning datasets for the training phase of a classification task. For the heuristic, a clustering algorithm is required to get its computation cost in a reasonable proportion to the task itself. This step is proceeded by construction of an information graph of the underlying classification patterns using approximate nearest neighbor methods. The presented method constitutes of two approaches, one for reducing a given training set, and another for partitioning the selected/reduced set. The heuristic targets large datasets, since the primary goal is significant reduction in training computation run-time without compromising prediction accuracy. Test results show that both approaches significantly speed-up the training task when compared against that of state-of-the-art shrinking heuristic available in LIBSVM. Furthermore, the approaches closely follow or even outperform in prediction accuracy. A network design is also presented for the partitioning based distributed training formulation. Added speed-up in training run-time is observed when compared to that of serial implementation of the approaches.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube