Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On choices of formulations of computing the generalized singular value decomposition of a large matrix pair (1907.10392v2)

Published 24 Jul 2019 in math.NA and cs.NA

Abstract: For the computation of the generalized singular value decomposition (GSVD) of a large matrix pair $(A,B)$ of full column rank, the GSVD is commonly formulated as two mathematically equivalent generalized eigenvalue problems, so that a generalized eigensolver can be applied to one of them and the desired GSVD components are then recovered from the computed generalized eigenpairs. Our concern in this paper is, in finite precision arithmetic, which generalized eigenvalue formulation is numerically preferable to compute the desired GSVD components more accurately. We make a detailed perturbation analysis on the two formulations and show how to make a suitable choice between them. Numerical experiments illustrate the results obtained.

Citations (2)

Summary

We haven't generated a summary for this paper yet.