Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Harmonically confined particles with long-range repulsive interactions (1907.09159v1)

Published 22 Jul 2019 in cond-mat.stat-mech, math-ph, math.MP, and math.PR

Abstract: We study an interacting system of $N$ classical particles on a line at thermal equilibrium. The particles are confined by a harmonic trap and repelling each other via pairwise interaction potential that behaves as a power law $\propto \sum_{\substack{i\neq j}}N|x_i-x_j|{-k}$ (with $k>-2$) of their mutual distance. This is a generalization of the well known cases of the one component plasma ($k=-1$), Dyson's log-gas ($k\to 0+$), and the Calogero-Moser model ($k=2$). Due to the competition between harmonic confinement and pairwise repulsion, the particles spread over a finite region of space for all $k>-2$. We compute exactly the average density profile for large $N$ for all $k>-2$ and show that while it is independent of temperature for sufficiently low temperature, it has a rich and nontrivial dependence on $k$ with distinct behavior for $-2<k\<1$, $k\>1$ and $k=1$.

Summary

We haven't generated a summary for this paper yet.