Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TARN: Temporal Attentive Relation Network for Few-Shot and Zero-Shot Action Recognition (1907.09021v1)

Published 21 Jul 2019 in cs.CV

Abstract: In this paper we propose a novel Temporal Attentive Relation Network (TARN) for the problems of few-shot and zero-shot action recognition. At the heart of our network is a meta-learning approach that learns to compare representations of variable temporal length, that is, either two videos of different length (in the case of few-shot action recognition) or a video and a semantic representation such as word vector (in the case of zero-shot action recognition). By contrast to other works in few-shot and zero-shot action recognition, we a) utilise attention mechanisms so as to perform temporal alignment, and b) learn a deep-distance measure on the aligned representations at video segment level. We adopt an episode-based training scheme and train our network in an end-to-end manner. The proposed method does not require any fine-tuning in the target domain or maintaining additional representations as is the case of memory networks. Experimental results show that the proposed architecture outperforms the state of the art in few-shot action recognition, and achieves competitive results in zero-shot action recognition.

Citations (148)

Summary

We haven't generated a summary for this paper yet.