Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral-based Graph Convolutional Network for Directed Graphs (1907.08990v1)

Published 21 Jul 2019 in cs.LG, cs.SI, and stat.ML

Abstract: Graph convolutional networks(GCNs) have become the most popular approaches for graph data in these days because of their powerful ability to extract features from graph. GCNs approaches are divided into two categories, spectral-based and spatial-based. As the earliest convolutional networks for graph data, spectral-based GCNs have achieved impressive results in many graph related analytics tasks. However, spectral-based models cannot directly work on directed graphs. In this paper, we propose an improved spectral-based GCN for the directed graph by leveraging redefined Laplacians to improve its propagation model. Our approach can work directly on directed graph data in semi-supervised nodes classification tasks. Experiments on a number of directed graph datasets demonstrate that our approach outperforms the state-of-the-art methods.

Citations (72)

Summary

We haven't generated a summary for this paper yet.