Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Fair quantile regression (1907.08646v1)

Published 19 Jul 2019 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: Quantile regression is a tool for learning conditional distributions. In this paper we study quantile regression in the setting where a protected attribute is unavailable when fitting the model. This can lead to "unfair'' quantile estimators for which the effective quantiles are very different for the subpopulations defined by the protected attribute. We propose a procedure for adjusting the estimator on a heldout sample where the protected attribute is available. The main result of the paper is an empirical process analysis showing that the adjustment leads to a fair estimator for which the target quantiles are brought into balance, in a statistical sense that we call $\sqrt{n}$-fairness. We illustrate the ideas and adjustment procedure on a dataset of 200,000 live births, where the objective is to characterize the dependence of the birth weights of the babies on demographic attributes of the birth mother; the protected attribute is the mother's race.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.