Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Graph-Convolutional Image Denoising (1907.08448v1)

Published 19 Jul 2019 in eess.IV, cs.CV, cs.LG, and cs.MM

Abstract: Non-local self-similarity is well-known to be an effective prior for the image denoising problem. However, little work has been done to incorporate it in convolutional neural networks, which surpass non-local model-based methods despite only exploiting local information. In this paper, we propose a novel end-to-end trainable neural network architecture employing layers based on graph convolution operations, thereby creating neurons with non-local receptive fields. The graph convolution operation generalizes the classic convolution to arbitrary graphs. In this work, the graph is dynamically computed from similarities among the hidden features of the network, so that the powerful representation learning capabilities of the network are exploited to uncover self-similar patterns. We introduce a lightweight Edge-Conditioned Convolution which addresses vanishing gradient and over-parameterization issues of this particular graph convolution. Extensive experiments show state-of-the-art performance with improved qualitative and quantitative results on both synthetic Gaussian noise and real noise.

Citations (134)

Summary

We haven't generated a summary for this paper yet.