Emergent Mind

SentiMATE: Learning to play Chess through Natural Language Processing

(1907.08321)
Published Jul 18, 2019 in cs.LG , cs.AI , and cs.CL

Abstract

We present SentiMATE, a novel end-to-end Deep Learning model for Chess, employing Natural Language Processing that aims to learn an effective evaluation function assessing move quality. This function is pre-trained on the sentiment of commentary associated with the training moves and is used to guide and optimize the agent's game-playing decision making. The contributions of this research are three-fold: we build and put forward both a classifier which extracts commentary describing the quality of Chess moves in vast commentary datasets, and a Sentiment Analysis model trained on Chess commentary to accurately predict the quality of said moves, to then use those predictions to evaluate the optimal next move of a Chess agent. Both classifiers achieve over 90 % classification accuracy. Lastly, we present a Chess engine, SentiMATE, which evaluates Chess moves based on a pre-trained sentiment evaluation function. Our results exhibit strong evidence to support our initial hypothesis - "Can Natural Language Processing be used to train a novel and sample efficient evaluation function in Chess Engines?" - as we integrate our evaluation function into modern Chess engines and play against agents with traditional Chess move evaluation functions, beating both random agents and a DeepChess implementation at a level-one search depth - representing the number of moves a traditional Chess agent (employing the alpha-beta search algorithm) looks ahead in order to evaluate a given chess state.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a detailed summary of this paper with a premium account.

We ran into a problem analyzing this paper.

Please try again later (sorry!).

Get summaries of trending AI papers delivered straight to your inbox

Unsubscribe anytime.

Test Your Knowledge

You answered out of questions correctly.

Well done!