Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

SentiMATE: Learning to play Chess through Natural Language Processing (1907.08321v3)

Published 18 Jul 2019 in cs.LG, cs.AI, and cs.CL

Abstract: We present SentiMATE, a novel end-to-end Deep Learning model for Chess, employing Natural Language Processing that aims to learn an effective evaluation function assessing move quality. This function is pre-trained on the sentiment of commentary associated with the training moves and is used to guide and optimize the agent's game-playing decision making. The contributions of this research are three-fold: we build and put forward both a classifier which extracts commentary describing the quality of Chess moves in vast commentary datasets, and a Sentiment Analysis model trained on Chess commentary to accurately predict the quality of said moves, to then use those predictions to evaluate the optimal next move of a Chess agent. Both classifiers achieve over 90 % classification accuracy. Lastly, we present a Chess engine, SentiMATE, which evaluates Chess moves based on a pre-trained sentiment evaluation function. Our results exhibit strong evidence to support our initial hypothesis - "Can Natural Language Processing be used to train a novel and sample efficient evaluation function in Chess Engines?" - as we integrate our evaluation function into modern Chess engines and play against agents with traditional Chess move evaluation functions, beating both random agents and a DeepChess implementation at a level-one search depth - representing the number of moves a traditional Chess agent (employing the alpha-beta search algorithm) looks ahead in order to evaluate a given chess state.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com