Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The size-Ramsey number of 3-uniform tight paths (1907.08086v3)

Published 18 Jul 2019 in math.CO

Abstract: Given a hypergraph $H$, the size-Ramsey number $\hat{r}_2(H)$ is the smallest integer $m$ such that there exists a graph $G$ with $m$ edges with the property that in any colouring of the edges of $G$ with two colours there is a monochromatic copy of $H$. We prove that the size-Ramsey number of the $3$-uniform tight path on $n$ vertices $P{(3)}_n$ is linear in $n$, i.e., $\hat{r}_2(P{(3)}_n) = O(n)$. This answers a question by Dudek, Fleur, Mubayi, and R\"odl for $3$-uniform hypergraphs [On the size-Ramsey number of hypergraphs, J. Graph Theory 86 (2016), 417-434], who proved $\hat{r}_2(P{(3)}_n) = O(n{3/2} \log{3/2} n)$.

Citations (7)

Summary

We haven't generated a summary for this paper yet.