Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discontinuous Galerkin methods for short pulse type equations via hodograph transformations (1907.07842v1)

Published 18 Jul 2019 in math.NA and cs.NA

Abstract: In the present paper, we consider the discontinuous Galerkin (DG) methods for solving short pulse (SP) type equations. The short pulse equation has been shown to be completely integrable, which admits the loop-soliton, cuspon-soliton solutions as well as smooth-soliton solutions. Through hodograph transformations, these nonclassical solutions can be profiled as the smooth solutions of the coupled dispersionless (CD) system or the sine-Gordon equation. Thus, DG methods can be developed for the CD system or the sine-Gordon equation to simulate the loop-soliton or cuspon-soliton solutions of the SP equation. The conservativeness or dissipation of the Hamiltonian or momentum for the semi-discrete DG schemes can be proved. Also we modify the above DG schemes and obtain an integration DG scheme. Theoretically the a-priori error estimates have been provided for the momentum conserved DG scheme and the integration DG scheme. We also propose the DG scheme and the integration DG scheme for the sine-Gordon equation, in case the SP equation can not be transformed to the CD system. All these DG schemes can be adopted to the generalized or modified SP type equations. Numerical experiments are provided to illustrate the optimal order of accuracy and capability of these DG schemes.

Citations (5)

Summary

We haven't generated a summary for this paper yet.