Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
164 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CADS: Core-Aware Dynamic Scheduler for Multicore Memory Controllers (1907.07776v1)

Published 17 Jul 2019 in cs.AR and cs.LG

Abstract: Memory controller scheduling is crucial in multicore processors, where DRAM bandwidth is shared. Since increased number of requests from multiple cores of processors becomes a source of bottleneck, scheduling the requests efficiently is necessary to utilize all the computing power these processors offer. However, current multicore processors are using traditional memory controllers, which are designed for single-core processors. They are unable to adapt to changing characteristics of memory workloads that run simultaneously on multiple cores. Existing schedulers may disrupt locality and bank parallelism among data requests coming from different cores. Hence, novel memory controllers that consider and adapt to the memory access characteristics, and share memory resources efficiently and fairly are necessary. We introduce Core-Aware Dynamic Scheduler (CADS) for multicore memory controller. CADS uses Reinforcement Learning (RL) to alter its scheduling strategy dynamically at runtime. Our scheduler utilizes locality among data requests from multiple cores and exploits parallelism in accessing multiple banks of DRAM. CADS is also able to share the DRAM while guaranteeing fairness to all cores accessing memory. Using CADS policy, we achieve 20% better cycles per instruction (CPI) in running memory intensive and compute intensive PARSEC parallel benchmarks simultaneously, and 16% better CPI with SPEC 2006 benchmarks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.