Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentiable Disentanglement Filter: an Application Agnostic Core Concept Discovery Probe (1907.07507v2)

Published 17 Jul 2019 in cs.CL

Abstract: It has long been speculated that deep neural networks function by discovering a hierarchical set of domain-specific core concepts or patterns, which are further combined to recognize even more elaborate concepts for the classification or other machine learning tasks. Meanwhile disentangling the actual core concepts engrained in the word embeddings (like word2vec or BERT) or deep convolutional image recognition neural networks (like PG-GAN) is difficult and some success there has been achieved only recently. In this paper we propose a novel neural network nonlinearity named Differentiable Disentanglement Filter (DDF) which can be transparently inserted into any existing neural network layer to automatically disentangle the core concepts used by that layer. The DDF probe is inspired by the obscure properties of the hyper-dimensional computing theory. The DDF proof-of-concept implementation is shown to disentangle concepts within the neural 3D scene representation - a task vital for visual grounding of natural language narratives.

Summary

We haven't generated a summary for this paper yet.