Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$t$-$k$-means: A Robust and Stable $k$-means Variant (1907.07442v4)

Published 17 Jul 2019 in cs.LG and stat.ML

Abstract: $k$-means algorithm is one of the most classical clustering methods, which has been widely and successfully used in signal processing. However, due to the thin-tailed property of the Gaussian distribution, $k$-means algorithm suffers from relatively poor performance on the dataset containing heavy-tailed data or outliers. Besides, standard $k$-means algorithm also has relatively weak stability, $i.e.$ its results have a large variance, which reduces its credibility. In this paper, we propose a robust and stable $k$-means variant, dubbed the $t$-$k$-means, as well as its fast version to alleviate those problems. Theoretically, we derive the $t$-$k$-means and analyze its robustness and stability from the aspect of the loss function and the expression of the clustering center, respectively. Extensive experiments are also conducted, which verify the effectiveness and efficiency of the proposed method. The code for reproducing main results is available at \url{https://github.com/THUYimingLi/t-k-means}.

Summary

We haven't generated a summary for this paper yet.