Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Galerkin finite volume shallow flow model: well-balanced treatment over uncertain topography (1907.06421v1)

Published 15 Jul 2019 in math.NA, cs.NA, and physics.comp-ph

Abstract: Stochastic Galerkin methods can quantify uncertainty at a fraction of the computational expense of conventional Monte Carlo techniques, but such methods have rarely been studied for modelling shallow water flows. Existing stochastic shallow flow models are not well-balanced and their assessment has been limited to stochastic flows with smooth probability distributions. This paper addresses these limitations by formulating a one-dimensional stochastic Galerkin shallow flow model using a low-order Wiener-Hermite Polynomial Chaos expansion with a finite volume Godunov-type approach, incorporating the surface gradient method to guarantee well-balancing. Preservation of a lake-at-rest over uncertain topography is verified analytically and numerically. The model is also assessed using flows with discontinuous and highly non-Gaussian probability distributions. Prescribing constant inflow over uncertain topography, the model converges on a steady-state flow that is subcritical or transcritical depending on the topography elevation. Using only four Wiener-Hermite basis functions, the model produces probability distributions comparable to those from a Monte Carlo reference simulation with 2000 iterations, while executing about 100 times faster. Accompanying model software and simulation data is openly available online.

Citations (4)

Summary

We haven't generated a summary for this paper yet.