Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Characterizing and Limiting Information Exposure in DNN Layers (1907.06034v1)

Published 13 Jul 2019 in cs.CR and cs.LG

Abstract: Pre-trained Deep Neural Network (DNN) models are increasingly used in smartphones and other user devices to enable prediction services, leading to potential disclosures of (sensitive) information from training data captured inside these models. Based on the concept of generalization error, we propose a framework to measure the amount of sensitive information memorized in each layer of a DNN. Our results show that, when considered individually, the last layers encode a larger amount of information from the training data compared to the first layers. We find that, while the neuron of convolutional layers can expose more (sensitive) information than that of fully connected layers, the same DNN architecture trained with different datasets has similar exposure per layer. We evaluate an architecture to protect the most sensitive layers within the memory limits of Trusted Execution Environment (TEE) against potential white-box membership inference attacks without the significant computational overhead.

Citations (11)

Summary

We haven't generated a summary for this paper yet.