Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Activity2Vec: Learning ADL Embeddings from Sensor Data with a Sequence-to-Sequence Model (1907.05597v1)

Published 12 Jul 2019 in cs.LG

Abstract: Recognizing activities of daily living (ADLs) plays an essential role in analyzing human health and behavior. The widespread availability of sensors implanted in homes, smartphones, and smart watches have engendered collection of big datasets that reflect human behavior. To obtain a machine learning model based on these data,researchers have developed multiple feature extraction methods. In this study, we investigate a method for automatically extracting universal and meaningful features that are applicable across similar time series-based learning tasks such as activity recognition and fall detection. We propose creating a sequence-to-sequence (seq2seq) model to perform this feature learning. Beside avoiding feature engineering, the meaningful features learned by the seq2seq model can also be utilized for semi-supervised learning. We evaluate both of these benefits on datasets collected from wearable and ambient sensors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Alireza Ghods (3 papers)
  2. Diane J. Cook (11 papers)
Citations (17)