Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement-Learning-based Driving Policy for Autonomous Road Vehicles (1907.05246v2)

Published 10 Jul 2019 in cs.RO, cs.AI, cs.CY, and cs.LG

Abstract: In this work the problem of path planning for an autonomous vehicle that moves on a freeway is considered. The most common approaches that are used to address this problem are based on optimal control methods, which make assumptions about the model of the environment and the system dynamics. On the contrary, this work proposes the development of a driving policy based on reinforcement learning. In this way, the proposed driving policy makes minimal or no assumptions about the environment, since a priori knowledge about the system dynamics is not required. Driving scenarios where the road is occupied both by autonomous and manual driving vehicles are considered. To the best of our knowledge, this is one of the first approaches that propose a reinforcement learning driving policy for mixed driving environments. The derived reinforcement learning policy, firstly, is compared against an optimal policy derived via dynamic programming, and, secondly, its efficiency is evaluated under realistic scenarios generated by the established SUMO microscopic traffic flow simulator. Finally, some initial results regarding the effect of autonomous vehicles' behavior on the overall traffic flow are presented.

Citations (29)

Summary

We haven't generated a summary for this paper yet.