Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Playing Go without Game Tree Search Using Convolutional Neural Networks (1907.04658v1)

Published 2 Jul 2019 in cs.AI and cs.LG

Abstract: The game of Go has a long history in East Asian countries, but the field of Computer Go has yet to catch up to humans until the past couple of years. While the rules of Go are simple, the strategy and combinatorics of the game are immensely complex. Even within the past couple of years, new programs that rely on neural networks to evaluate board positions still explore many orders of magnitude more board positions per second than a professional can. We attempt to mimic human intuition in the game by creating a convolutional neural policy network which, without any sort of tree search, should play the game at or above the level of most humans. We introduce three structures and training methods that aim to create a strong Go player: non-rectangular convolutions, which will better learn the shapes on the board, supervised learning, training on a data set of 53,000 professional games, and reinforcement learning, training on games played between different versions of the network. Our network has already surpassed the skill level of intermediate amateurs simply using supervised learning. Further training and implementation of non-rectangular convolutions and reinforcement learning will likely increase this skill level much further.

Citations (3)

Summary

We haven't generated a summary for this paper yet.