Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error analysis of finite difference/collocation method for the nonlinear coupled parabolic free boundary problem modeling plaque growth in the artery (1907.04097v1)

Published 9 Jul 2019 in math.NA and cs.NA

Abstract: The main target of this paper is to present a new and efficient method to solve a nonlinear free boundary mathematical model of atherosclerosis. This model consists of three parabolics, one elliptic and one ordinary differential equations that are coupled together and describe the growth of a plaque in the artery. We start our discussion by using the front fixing method to fix the free domain and simplify the model by changing the mix boundary condition to a Neumann one by applying suitable changes of variables. Then, after employing a nonclassical finite difference and the collocation method on this model, we prove the stability and convergence of methods. Finally, some numerical results are considered to show the efficiency of the method.

Citations (3)

Summary

We haven't generated a summary for this paper yet.