Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fully Convolutional Network for Removing DCT Artefacts From Images (1907.03798v2)

Published 8 Jul 2019 in eess.IV and cs.CV

Abstract: Image compression is one of the essential methods of image processing. Its most prominent advantage is the significant reduction of image size allowing for more efficient storage and transfer. However, lossy compression is associated with the loss of some image details in favor of reducing its size. In compressed images, the deficiencies are manifested by noticeable defects in the form of artifacts; the most common are block artifacts, ringing effect, or blur. In this article, we propose three models of fully convolutional networks with different configurations and examine their abilities in reducing compression artifacts. In the experiments, we research the extent to which the results are improved for models that will process the image in a similar way to the compression algorithm, and whether the initialization with predefined filters would allow for better image reconstruction than developed solely during learning.

Citations (3)

Summary

We haven't generated a summary for this paper yet.