Papers
Topics
Authors
Recent
2000 character limit reached

The Yoneda Reduction of Polymorphic Types (Extended Version)

Published 8 Jul 2019 in cs.LO and math.LO | (1907.03481v3)

Abstract: In this paper we explore a family of type isomorphisms in System F whose validity corresponds, semantically, to some form of the Yoneda isomorphism from category theory. These isomorphisms hold under theories of equivalence stronger than beta-eta-equivalence, like those induced by parametricity and dinaturality. We show that the Yoneda type isomorphisms yield a rewriting over types, that we call Yoneda reduction, which can be used to eliminate quantifiers from a polymorphic type, replacing them with a combination of monomorphic type constructors. We establish some sufficient conditions under which quantifiers can be fully eliminated from a polymorphic type, and we show some application of these conditions to count the inhabitants of a type and to compute program equivalence in some fragments of System F.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.