Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Optimal Fully Dynamic Densest Subgraph (1907.03037v2)

Published 5 Jul 2019 in cs.DS

Abstract: We give the first fully dynamic algorithm which maintains a $(1-\epsilon)$-approximate densest subgraph in worst-case time $\text{poly}(\log n, \epsilon{-1})$ per update. Dense subgraph discovery is an important primitive for many real-world applications such as community detection, link spam detection, distance query indexing, and computational biology. We approach the densest subgraph problem by framing its dual as a graph orientation problem, which we solve using an augmenting path-like adjustment technique. Our result improves upon the previous best approximation factor of $\left(\frac{1}{4} - \epsilon\right)$ for fully dynamic densest subgraph [Bhattacharya et. al., STOC 15]. We also extend our techniques to solving the problem on vertex-weighted graphs with similar runtimes. Additionally, we reduce the $(1-\epsilon)$-approximate densest subgraph problem on directed graphs to $O(\log n/\epsilon)$ instances of $(1-\epsilon)$-approximate densest subgraph on vertex-weighted graphs. This reduction, together with our algorithm for vertex-weighted graphs, gives the first fully-dynamic algorithm for directed densest subgraph in worst-case time $\text{poly}(\log n, \epsilon^{-1})$ per update. Moreover, combined with a near-linear time algorithm for densest subgraph [Bahmani et. al., WAW14], this gives the first near-linear time algorithm for directed densest subgraph.

Citations (48)

Summary

We haven't generated a summary for this paper yet.