Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

A Comparison of Flare Forecasting Methods. II. Benchmarks, Metrics and Performance Results for Operational Solar Flare Forecasting Systems (1907.02905v1)

Published 5 Jul 2019 in astro-ph.SR, astro-ph.IM, physics.data-an, and physics.space-ph

Abstract: Solar flares are extremely energetic phenomena in our Solar System. Their impulsive, often drastic radiative increases, in particular at short wavelengths, bring immediate impacts that motivate solar physics and space weather research to understand solar flares to the point of being able to forecast them. As data and algorithms improve dramatically, questions must be asked concerning how well the forecasting performs; crucially, we must ask how to rigorously measure performance in order to critically gauge any improvements. Building upon earlier-developed methodology (Barnes et al, 2016, Paper I), international representatives of regional warning centers and research facilities assembled in 2017 at the Institute for Space-Earth Environmental Research, Nagoya University, Japan to - for the first time - directly compare the performance of operational solar flare forecasting methods. Multiple quantitative evaluation metrics are employed, with focus and discussion on evaluation methodologies given the restrictions of operational forecasting. Numerous methods performed consistently above the "no skill" level, although which method scored top marks is decisively a function of flare event definition and the metric used; there was no single winner. Following in this paper series we ask why the performances differ by examining implementation details (Leka et al. 2019, Paper III), and then we present a novel analysis method to evaluate temporal patterns of forecasting errors in (Park et al. 2019, Paper IV). With these works, this team presents a well-defined and robust methodology for evaluating solar flare forecasting methods in both research and operational frameworks, and today's performance benchmarks against which improvements and new methods may be compared.

Citations (91)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.