Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on optimal $H^1$-error estimates for Crank-Nicolson approximations to the nonlinear Schrödinger equation (1907.02782v3)

Published 5 Jul 2019 in math.NA and cs.NA

Abstract: In this paper we consider a mass- and energy--conserving Crank-Nicolson time discretization for a general class of nonlinear Schr\"odinger equations. This scheme, which enjoys popularity in the physics community due to its conservation properties, was already subject to several analytical and numerical studies. However, a proof of optimal $L{\infty}(H1)$-error estimates is still open, both in the semi-discrete Hilbert space setting, as well as in fully-discrete finite element settings. This paper aims at closing this gap in the literature. We also suggest a fixed point iteration to solve the arising nonlinear system of equations that makes the method easy to implement and efficient. This is illustrated by numerical experiments.

Citations (13)

Summary

We haven't generated a summary for this paper yet.