Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring the Data Efficiency of Deep Learning Methods (1907.02549v1)

Published 3 Jul 2019 in cs.LG, cs.CV, and stat.ML

Abstract: In this paper, we propose a new experimental protocol and use it to benchmark the data efficiency --- performance as a function of training set size --- of two deep learning algorithms, convolutional neural networks (CNNs) and hierarchical information-preserving graph-based slow feature analysis (HiGSFA), for tasks in classification and transfer learning scenarios. The algorithms are trained on different-sized subsets of the MNIST and Omniglot data sets. HiGSFA outperforms standard CNN networks when the models are trained on 50 and 200 samples per class for MNIST classification. In other cases, the CNNs perform better. The results suggest that there are cases where greedy, locally optimal bottom-up learning is equally or more powerful than global gradient-based learning.

Citations (10)

Summary

We haven't generated a summary for this paper yet.