Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Quantum Field Theory of Representation Learning (1907.02163v1)

Published 4 Jul 2019 in stat.ML, cond-mat.stat-mech, and cs.LG

Abstract: Continuous symmetries and their breaking play a prominent role in contemporary physics. Effective low-energy field theories around symmetry breaking states explain diverse phenomena such as superconductivity, magnetism, and the mass of nucleons. We show that such field theories can also be a useful tool in machine learning, in particular for loss functions with continuous symmetries that are spontaneously broken by random initializations. In this paper, we illuminate our earlier published work (Bamler & Mandt, 2018) on this topic more from the perspective of theoretical physics. We show that the analogies between superconductivity and symmetry breaking in temporal representation learning are rather deep, allowing us to formulate a gauge theory of `charged' embedding vectors in time series models. We show that making the loss function gauge invariant speeds up convergence in such models.

Summary

We haven't generated a summary for this paper yet.