Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speaker-independent classification of phonetic segments from raw ultrasound in child speech (1907.01413v1)

Published 1 Jul 2019 in eess.AS, cs.CL, cs.CV, cs.LG, cs.SD, and eess.IV

Abstract: Ultrasound tongue imaging (UTI) provides a convenient way to visualize the vocal tract during speech production. UTI is increasingly being used for speech therapy, making it important to develop automatic methods to assist various time-consuming manual tasks currently performed by speech therapists. A key challenge is to generalize the automatic processing of ultrasound tongue images to previously unseen speakers. In this work, we investigate the classification of phonetic segments (tongue shapes) from raw ultrasound recordings under several training scenarios: speaker-dependent, multi-speaker, speaker-independent, and speaker-adapted. We observe that models underperform when applied to data from speakers not seen at training time. However, when provided with minimal additional speaker information, such as the mean ultrasound frame, the models generalize better to unseen speakers.

Citations (20)

Summary

We haven't generated a summary for this paper yet.