Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Guiding Block: Synthesizing Realistic Looking Variants Capable of Even Large Change Demands (1907.01187v1)

Published 2 Jul 2019 in cs.CV

Abstract: Realistic image synthesis is to generate an image that is perceptually indistinguishable from an actual image. Generating realistic looking images with large variations (e.g., large spatial deformations and large pose change), however, is very challenging. Handing large variations as well as preserving appearance needs to be taken into account in the realistic looking image generation. In this paper, we propose a novel realistic looking image synthesis method, especially in large change demands. To do that, we devise generative guiding blocks. The proposed generative guiding block includes realistic appearance preserving discriminator and naturalistic variation transforming discriminator. By taking the proposed generative guiding blocks into generative model, the latent features at the layer of generative model are enhanced to synthesize both realistic looking- and target variation- image. With qualitative and quantitative evaluation in experiments, we demonstrated the effectiveness of the proposed generative guiding blocks, compared to the state-of-the-arts.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Minho Park (13 papers)
  2. Hak Gu Kim (12 papers)
  3. Yong Man Ro (91 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.