Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-scale Template Matching with Scalable Diversity Similarity in an Unconstrained Environment (1907.01150v1)

Published 2 Jul 2019 in cs.CV

Abstract: We propose a novel multi-scale template matching method which is robust against both scaling and rotation in unconstrained environments. The key component behind is a similarity measure referred to as scalable diversity similarity (SDS). Specifically, SDS exploits bidirectional diversity of the nearest neighbor (NN) matches between two sets of points. To address the scale-robustness of the similarity measure, local appearance and rank information are jointly used for the NN search. Furthermore, by introducing penalty term on the scale change, and polar radius term into the similarity measure, SDS is shown to be a well-performing similarity measure against overall size and rotation changes, as well as non-rigid geometric deformations, background clutter, and occlusions. The properties of SDS are statistically justified, and experiments on both synthetic and real-world data show that SDS can significantly outperform state-of-the-art methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.