Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fooling a Real Car with Adversarial Traffic Signs (1907.00374v1)

Published 30 Jun 2019 in cs.CR, cs.CV, and eess.IV

Abstract: The attacks on the neural-network-based classifiers using adversarial images have gained a lot of attention recently. An adversary can purposely generate an image that is indistinguishable from a innocent image for a human being but is incorrectly classified by the neural networks. The adversarial images do not need to be tuned to a particular architecture of the classifier - an image that fools one network can fool another one with a certain success rate.The published works mostly concentrate on the use of modified image files for attacks against the classifiers trained on the model databases. Although there exists a general understanding that such attacks can be carried in the real world as well, the works considering the real-world attacks are scarce. Moreover, to the best of our knowledge, there have been no reports on the attacks against real production-grade image classification systems.In our work we present a robust pipeline for reproducible production of adversarial traffic signs that can fool a wide range of classifiers, both open-source and production-grade in the real world. The efficiency of the attacks was checked both with the neural-network-based classifiers and legacy computer vision systems. Most of the attacks have been performed in the black-box mode, e.g. the adversarial signs produced for a particular classifier were used to attack a variety of other classifiers. The efficiency was confirmed in drive-by experiments with a production-grade traffic sign recognition systems of a real car.

Citations (87)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com