Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolution Based Spectral Partitioning Architecture for Hyperspectral Image Classification (1906.11981v1)

Published 27 Jun 2019 in cs.CV, cs.LG, and eess.IV

Abstract: Hyperspectral images (HSIs) can distinguish materials with high number of spectral bands, which is widely adopted in remote sensing applications and benefits in high accuracy land cover classifications. However, HSIs processing are tangled with the problem of high dimensionality and limited amount of labelled data. To address these challenges, this paper proposes a deep learning architecture using three dimensional convolutional neural networks with spectral partitioning to perform effective feature extraction. We conduct experiments using Indian Pines and Salinas scenes acquired by NASA Airborne Visible/Infra-Red Imaging Spectrometer. In comparison to prior results, our architecture shows competitive performance for classification results over current methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.