Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalization of Dempster-Shafer theory: A complex belief function (1906.11409v1)

Published 27 Jun 2019 in cs.AI

Abstract: Dempster-Shafer evidence theory has been widely used in various fields of applications, because of the flexibility and effectiveness in modeling uncertainties without prior information. However, the existing evidence theory is insufficient to consider the situations where it has no capability to express the fluctuations of data at a given phase of time during their execution, and the uncertainty and imprecision which are inevitably involved in the data occur concurrently with changes to the phase or periodicity of the data. In this paper, therefore, a generalized Dempster-Shafer evidence theory is proposed. To be specific, a mass function in the generalized Dempster-Shafer evidence theory is modeled by a complex number, called as a complex basic belief assignment, which has more powerful ability to express uncertain information. Based on that, a generalized Dempster's combination rule is exploited. In contrast to the classical Dempster's combination rule, the condition in terms of the conflict coefficient between the evidences K<1 is released in the generalized Dempster's combination rule. Hence, it is more general and applicable than the classical Dempster's combination rule. When the complex mass function is degenerated from complex numbers to real numbers, the generalized Dempster's combination rule degenerates to the classical evidence theory under the condition that the conflict coefficient between the evidences K is less than 1. In a word, this generalized Dempster-Shafer evidence theory provides a promising way to model and handle more uncertain information.

Citations (3)

Summary

We haven't generated a summary for this paper yet.